大家好,今天小编关注到一个比较有意思的话题,就是关于留学英国数据科学专业的问题,于是小编就整理了3个相关介绍留学英国数据科学专业的解答,让我们一起看看吧。
英国的科技发展有中国强吗?
英国的科技发展比中国强太多。
数据显示,英国在2019年成功吸引到了132亿美元(约101亿英镑,900亿人民币)的科技投资,较2018年增长了41亿美元,年涨幅高达44%,总投资额刷新历史新高。
增速方面,对比2018年,2019年英国科技融资额增长了44%,增速力压中美,在全世界排名第一。
在经历了前几年的科技热潮后,2019年全年,美国和中国科技行业吸引的投资分别下降了20%和65%。
中英美三个国家中,只有英国科技投资在去年实现了大幅度增长。
雷丁大学含金量高吗?
含金量非高。
雷丁大学始建于1892年,由牛津大学创办,1926年得到皇家授权正式独立成为大学,是英国顶尖的研究型大学之一,其教学、研究和企业都享有世界级的声誉,超过80%的大学项目在全球有影响。雷丁大学数据科学研究生项目在最新的英国研究生教学调查中排名全英第3。
我是经济学专业大二学生,未来想从事金融,想自己学一下关于数据分析(Python)方面,应该怎么学?
第一步:学习Python语言基础,它的各种语法、用法。这个过程因人而异,有的人喜欢看书,这里推荐《Python编程从入门到实践》,边看边跟着做,就能掌握Python的基本用法;有的人喜欢看***,现在网络发达很好找,比如B站、慕课网,搜一下就有。在此期间,可以看看廖雪峰等人的博客、Github上的学习笔记等。
第二步:学习数据分析所需要的库,这里主要是numpy、pandas、matplotlib等。推荐书籍为《用Python进行数据分析》,这本书作者是pandas的缔造者,里面很多示例,跟着敲就能通晓数据分析应该怎么做。
第三步:学习一定的爬虫知识和机器学习。数据怎么来?除了用别人的,有的时候还需要自己收集,这就需要用到爬虫。建议直接看崔庆才的爬虫***,B站有。而数据分析跟机器学习是形影不离、相辅相成的,网上教程也是一大堆,入门的话推荐吴恩达的网课版,注意不是斯坦福上课那个。
学习完前面的步骤,基本上就能自己开始数据分析了。遇到困难,多百度,多提问,逐步掌握。
经济学虽然有经济统计专业课程,但与数据分析还是有差距,不系统不深入。
热门职业竞争厉害,其他专业转方向搞大数据分析与挖掘,不系统学习是不可能胜出的。
题主经济学大二生,将来目标是金融行业,这是很不错的职业规划,竞争虽然激烈但确实有钱途。至于说数理工具数据分析等等是否要下大力气学习,这是当然的,对将来工作很有用,但是,却不是最重要的。对金融行业就业来说,什么最重要?
学历!背景!
金融就业对学历,对出身,要求很高,非常高,不管是投行,债券,还是基金都是如此。国内金融高端就业领域对毕业生所就读大学院校的要求很变态,顶级的只要清华经管,连清华五道口院都以研究岗为主;北大光华汇丰CCER还有现在慢慢出头的燕京;复旦经管交大高金安泰,当然还有人大等这些最顶尖的高校,实事求是的说,其它学校机会很少。举个例子,BATM招聘,最后录取的投资部成员,都是清北毕业,且不乏哈佛、耶鲁等藤校背景的。再比如国内某著名基金,只要本科就是清北的,清北硕士都不行。出身,很重要。
金融专业有很强的地域性,记住:重要的不是金融学还是金融工程数据分析计算机技术,而是各种实习背景的安排,没有实习,没有强有力的实习,实力无从体现,找工作一样没戏。什么叫“强有力”?一般小券商的实习,四大事务所的实习,都没多大用。
清北的金融本,大部分都去米国英国了,去哥大伦敦政经巴黎高商看看,乌泱乌泱的。若非如此,一般985两财一贸考清北复交的金融研上不了岸。
金融经济学跟其他专业不太一样,它是非常注重实操的行业,专业上需要学习的东西不太多,也没有想象中的难度。金融业从业,人脉,关系,朋友圈,比投资技术重要。所以,题主学不学数据分析没那么关键,重要的是考研,提升自己,能出去就出去,出去也必须瞄准米国前十英法顶级,出不去当然死掐清北复交至少是985两财一贸,再把实习背景做做好。
题主有志于金融行业,当然没毛病。只是有一点一定要提醒一下,这是个投入比较大的专业,资金投入,时间投入,精力投入都很多,尤其是实习,要有心理准备。
好一点的经济金融专业岗位,现在看来不太可能本科就去就业,绝大部分得读个研深造一下。一般无非就是两个出路:保研,或者出国。
到此,以上就是小编对于留学英国数据科学专业的问题就介绍到这了,希望介绍关于留学英国数据科学专业的3点解答对大家有用。